
View - molecular graphics for all devices -

from smartphones to workstations

by Elmar Krieger and Gert Vriend

This accessory document for our Bioinformatics Applications Note contains the detailed step-by-step

recipe to implement the visualization algorithm described. This includes the creation of ray-traced

spheres with POVRay, the setup steps and the actual application main cycle.

 1 Prepare the impostor graphics (=sphere images), for example using POVRay:

 1.1 Loop over the S different sphere styles. We use eight styles, each described by a different

POVRay texture: Normal with phong shading, normal without phong shading, sky reflection

with phong shading, normal with phong shading and bumps, agate, crackle, granite and outline

(the latter means single color atoms with a black border to yield comic-style graphics, as in the

PDB's molecule of the month):
char *pov_texture[]={

 /* 0 Normal with phong shading */

 "texture { pigment { color Ball } finish { phong 1 ambient 0.15 } }",

 /* 1 Normal without phong shading */

 "texture { pigment { color Ball } finish { ambient 0.15 } }",

 /* 2 Sky reflection with phong shading */

 "texture { pigment { granite turbulence 0.70 color_map { [.4, color Ball] [1.0,

 color 1.3*Ball] } scale 0.8 } finish { phong 1 ambient 0.15 } } ",

 /* 3 Normal with phong shading and bumps */

 "texture { pigment { color Ball } normal { bumps 0.25 scale 0.05 } finish { phong 1

 ambient 0.15 } }",

 /* 4 Agate (see http://astronomy.swin.edu.au/~pbourke/povray/bump/) */

 "texture { pigment { color Ball } normal { agate agate_turb 0.5 scale 1 } finish {

 phong 1 ambient 0.15 } }",

 /* 5 Crackle */

 "texture { pigment { color Ball } normal { crackle 1 scale 0.2 } finish { phong 1

 ambient 0.15 } }",

 /* 6 Granite */

 "texture { pigment { color Ball } normal { granite scale 0.5 } finish { phong 1

 ambient 0.15 } }",

 /* 7 Outline (dummy, needs post-processing) */

 "texture { pigment { color Ball } finish { ambient 1.0 } }" };

 1.1.1 Open a binary file to store the sphere bitmaps with the current style (with a file format

of your choice), let's name it 'sphere_styleS.dat'

 1.1.2 Loop over the different light-source positions. We use 48 positions, all in the first

quadrant (X>0, Y>0, Z=-d..+d). The other three quadrants are created by mirroring on the

fly when the user moves the light-source interactively around the molecule (i.e. the user

can choose 192 light-source positions, which is enough to hide the fact that the graphics

are precalculated).

 1.1.2.1 Loop over the three different atom shifts along the X axis: The atom is now ray-

traced three times, horizontally shifted by 0, -s and +s. The first zero shift is used

normally, and the latter two shifts are used for stereoscopic 3D graphics, where the

images for left and right eye need different sphere graphics, so that spheres appear

plastic and not flat.

 1.1.2.1.1 Run POVRay to trace the sphere with color yellow and size 256x256 pixels,

given the current light-source position and horizontal camera shift. For 4K and

Apple retina displays, the sphere size should be increased to 512x512 pixels, and

the steps below adjusted.

 1.1.2.1.2 Load the POVRay output file

 1.1.2.1.3 Move the sphere to the left side (for stereo modes, we can't simply create a

256*256 output file due to the shift -s and +s, and use 640*256 instead)

 1.1.2.1.4 Clip the sphere bitmap size to 256x256 pixels

 1.1.2.1.5 Loop over the 256 pixel lines

 1.1.2.1.5.1 Find the first non-empty pixel from the left and set all empty pixels on

the left to its color.

 1.1.2.1.5.2 Find the first non-empty pixel from the right and set all empty pixels

on the right to its color. The last two steps make sure that the background color

is removed from the sphere bitmap and does not accidentally appear during

rendering with OpenGL.

 1.1.2.1.6 To save space, compress the sphere bitmap from 24-bit true-color to an 8-bit

intensity (considering the red and blue color channels only, the green channel

equals the red, since the sphere was ray-traced in yellow).

 1.1.2.1.7 Compress the 8-bit intensity further with Zlib

 1.1.2.1.8 Store the Zlib compressed 256x256 8-bit intensity bitmap in file

'sphere_styleS.dat'

 2 On application startup: set the default parameters for the graphics engine, for example by loading

them from an *.ini file that stores the user's preferences

 2.1 ply_lightdir – The direction (unit-)vector from the origin to the light-source for all PoLYgons.

 2.2 atv_size – ATom Visualization Size - The size of atoms when they touch (and are clipped by)

the view plane, in percent of the maximum size supported by the graphics engine [0..1].

Changing this size is equivalent to moving the near clipping plane.

 2.3 atv_texture – The texture applied to atoms (plain, granite, sky reflection..)

 2.4 atv_ambience – The amount of darkness caused by blocked ambient light [0..1]

 2.5 atv_shadow – The amount of darkness caused by shadows [0..1]

 3 Create the application window

 4 Initialize the graphics engine

 4.1 Determine ply_eyedis, the distance between the eye (=camera) and the view plane in pixels,

which depends on the size and aspect ratio of the application window: If WindowSize.x*0.75>

WindowSize.y, then ply_eyedis=WindowSize.x, else ply_eyedis=WindowSize.y/0.75.

 4.2 Determine the scaling factor from atom coordinates [in femtometers] to screen pixels:

atv_fmtopix=8e-7*ply_eyedis*atv_size, e.g. if the window size is 1024*768 and atoms are

shown with full size, then an atom sphere with radius 1.5 Å gets a radius of 123 pixels for

visualization.

 4.3 Allocate a 1024*1024 OpenGL texture atv_viewtex (Figure 1B), where the precalculated

sphere images will be stored (or 2048*2048 for high-res screens). If stereoscopic 3D is

enabled, allocate another texture to store sphere images as seen from the other eye

(atv_viewtex2).

 4.4 Create a table 'defradtab' of defined sphere radii (in pixels) that will be present in atv_viewtex

(Figure 1B), we use [1,2,3,4,5,6,7,8,9,10,11,12,14,16,18,20,22,24,26,28,30,32,64,127], so the

largest atom that can be displayed (without zooming the texture and reducing the resolution)

has a radius of 127 pixels.

 4.5 Define ATV_COLORS, the number of standard colors available, we use ATV_COLORS=7:

blue, magenta, red, yellow, green, cyan and grey (Fig.1B). Atoms with non-standard colors can

be created by blending two standard colors using multi-texturing and a variable blending

factor.

 4.6 Loop over the sphere radii r in defradtab:

 4.6.1 Calculate the alpha mask for a filled circle of radius r (which will later be filled with the

2D image of the atom sphere). This is just a bitmap of 8-bit values, 2r*2r pixels large, with

values indicating the fraction of the pixel covered by the filled circle (ranging from 0 (pixel

is totally outside circle) to 255 (pixel is totally inside circle)).

 4.6.2 Loop over the ATV_COLORS, and for each find the next empty spot in texture

atv_viewtex, copy the alpha mask to the texture's alpha channel at this spot (and also to

atv_viewtex2 if present).

 4.7 Load the Zlib compressed file with the 8-bit intensity bitmaps of size 256*256

'sphere_styleS.dat', where 'S' is the chosen atom texture atv_texture. This step is repeated

whenever the user changes the atom texture.

 4.8 Fill the textures atv_viewtex/atv_viewtex2 with actual sphere images. This step is repeated

whenever the user chooses a new atom texture or changes the light-source position.

 4.8.1 Loop over the one or two sphere images stored in 'sphere_styleS.dat' (1 normally, 2 in

stereoscopic 3D mode):

 4.8.1.1 Extract and uncompress the 8-bit intensity bitmap corresponding to the current

light-source position using Zlib. Potentially mirror the bitmap horizontally and/or

vertically (if the light-source is not in the first quadrant).

 4.8.1.2 Loop over the sphere radii r in defradtab:

 4.8.1.2.1 Shrink the 256*256 sphere image down to size 2r*2r

 4.8.1.2.2 Loop over the ATV_COLORS standard colors i:

 4.8.1.2.2.1 Convert the 8-bit intensity bitmap to an RGB color bitmap with color

i.

 4.8.1.2.2.2 Copy the bitmap to its position in atv_viewtex or atv_viewtex2, the

alpha channel has been initialized previously.

 4.8.2 The result should now look like in Figure 1B.

 4.9 Precalculate Z-buffers for drawing intersecting atoms:

 4.9.1 Create a 256*256 Z-buffer of 8-bit values 'atv_zbuffbak', which stores the depth values

of a sphere with radius 127, in practice the relative Z-coordinate of the sphere surface. 127

is assigned to the pixels at the very front (sphere center), 0 is assigned to the most distant

pixels including those outside the sphere.

 4.9.2 Loop over the chemical elements i:

 4.9.2.1 Determine ElementRadius[i], the space filling visualization radius of this element

in pixels (we use Van der Waals radius [in fm] * 0.7 * atv_fmtopix, which proves most

useful for visualization, since hydrogens can still be seen outside their heavy atoms,

and hydrogen-bonded hydrogens nicely touch the acceptor).

 4.9.2.2 Has the same ElementRadius[i] already been used for a preceding chemical

element? Then skip this element and reuse the Z-buffers of the preceding element. To

save memory, elements with similar radii are grouped together for visualization

purposes.

 4.9.2.3 Loop over the radii r from 1 to ElementRadius[i]

 4.9.2.3.1 Create a copy of the 256*256 Z-buffer atv_zbuffbak

 4.9.2.3.2 Shrink it down to size 2r*2r

 4.9.2.3.3 Scale the Z-values in the Z-buffer with ElementRadius[i]/127.

 4.9.2.3.4 Store the Z-buffer for later use (when intersecting spheres are drawn)

 4.10 Precalculate the atom densities for ambient lighting. A very low-res 8-bit 3D density grid

(2.62 Å spacing) of the scene will be created to determine the amount of light reaching each

atom from the six main directions (+X,-X,+Y,-Y,+Z,-Z). Densities to fill this 3D grid are

precalculated for the three atom styles 'space filling', 'balls&sticks' and 'sticks', with radii of 1.2

Å, 0.95 Å and 0.85 Å, respectively (chosen empirically to give a convincing visual result).

Since atoms are thus smaller than the grid spacing of 2.62 Å, the density needs to be added

with 'sub-grid-cell' accuracy. We define this 'sub-grid-cell' accuracy with 2 bits, i.e. four

slightly shifted densities along each axis are precalculated for each of the three atom styles,

yielding 4*4*4*3 = 192 different atom densities (the atom density index 'ADIdx' can then be

calculated from the atom coordinate and atom style using simple shifts and logical operations

as described in detail later). The actual density values are obtained by calculating the fraction

of the grid cell that is inside the atom and multiplying the result with 112. Since an atom with

radius 1.2 Å and volume 7.24 Å3 occupies at most 7.24/2.623 = 40% of a grid cell, the

maximum density added is thus 112*0.4 = 45. So if more than 255/45 = ~5.7 atoms are present

in a cell, the limit imposed by the 8-bit data-type is reached, the grid cell becomes completely

light blocking. As described later, the densities will be integrated along the six main directions,

finally ambient light reaching each atom will be interpolated from the integrated grid.

 4.11 Precalculate the atom circle masks for shadow calculation. A low-res 16-bit Z-buffer of the

scene (with a resolution of 0.164*0.164 Å per pixel) will be drawn as seen from the direction

of the light-source (Figure 1D). For each atom, one can then count the fraction of pixels with a

Z-value smaller or equal than the atom's own Z-value, which is the fraction of light that

reaches the atom. The shape of the atoms drawn in the Z-buffer is stored in three circle masks

(16-bit bitmaps that contain 0 for pixels outside the circle and 0xffff for pixels inside the circle

and are used as an AND mask when filling the Z-buffer (described later)). The sizes of the

three circle masks are 15*15 pixels (used for space filling atoms), 11*11 pixels (for ball&sticks

atoms), and 7*7 pixels (for atoms shown as sticks). So an 'X' corresponds to 0xffff, and a '.' to

0:
 XXXXX..... XXX.... ..XXX..

 ...XXXXXXXXX... ..XXXXXXX.. .XXXXX.

 ..XXXXXXXXXXX.. .XXXXXXXXX. XXXXXXX

 .XXXXXXXXXXXXX. .XXXXXXXXX. XXXXXXX

 .XXXXXXXXXXXXX. XXXXXXXXXXX XXXXXXX

 XXXXXXXXXXXXXXX XXXXXXXXXXX .XXXXX.

 XXXXXXXXXXXXXXX XXXXXXXXXXX ..XXX..

 XXXXXXXXXXXXXXX .XXXXXXXXX.

 XXXXXXXXXXXXXXX .XXXXXXXXX.

 XXXXXXXXXXXXXXX ..XXXXXXX..

 .XXXXXXXXXXXXX. XXX....

 .XXXXXXXXXXXXX.

 ..XXXXXXXXXXX..

 ...XXXXXXXXX...

 XXXXX.....

 4.12 Initialize the 256 element table atv_darknessfogpos, which converts an 8-bit darkness value

(from shadows and ambient lighting, see further below) to a 32-bit float (the Z-position

provided as fog coordinate in a GL_FOG_COORDINATE_ARRAY, yielding the expected

darkness considering the current fog equation).

 5 Run the application's main loop

 5.1 Evaluate keyboard and mouse input to let the user interact with the scene

 5.2 For any newly added atoms i: Set the radius Atom[i].Radius [in pixels]. If Atom[i].Style is

'stick', choose a user-defined stick radius. Otherwise consider the chemical element:

Atom[i].Radius = ElementRadius[Atom[i].Element]. If Atom[i].Style is 'ball&stick', scale the

radius down by a user-defined factor.

 5.3 Calculate ambient lighting:

 5.3.1 Loop over all objects ('objects' are independent ranges of atoms that can be moved and

rotated separately, e.g. one object per PDB file loaded, or one object per NMR ensemble

member). Have atoms in the object changed their relative positions since the last loop?

Have atoms been added or deleted? Then ambient lighting has changed and needs to be

updated for this object now:

 5.3.1.1 Loop over the heavy atoms i in the object to determine the bounding box in units

of [femtometers] from the atom coordinates in the local coordinate system of the

original PDB file (Atom[i].LocalPos).

 5.3.1.2 Convert the size of the bounding box from [fm] to [grid units], 1 grid unit is

1<<18 fm, i.e. 2.62 Å (see initialization).

 5.3.1.3 Allocate a 3D grid of 8-bit unsigned bytes with the dimensions of the bounding

box. This grid stores the densities.

 5.3.1.4 Loop over the heavy atoms i in the object:

 5.3.1.4.1 Determine the grid coordinates of the cube that contains the atom center:

CubePos=(Atom[i].LocalPos-BoundingBoxStart)>>18.

 5.3.1.4.2 Determine the relative atom position within the grid cube, which is in the

range 0..3: AtomRelPos=((Atom[i].LocalPos-BoundingBoxStart)>>16)&3.

 5.3.1.4.3 Determine ADIdx, the index into the atom density data for this atom. The

index depends on the atom style (0=space filling, 1=ball&stick, 2=stick) and the

relative atom position, and is in the range [0..191] (see initialization above).

ADIdx=AtomRelPos.x+AtomRelPos.y*4+AtomRelPos.z*16+Atom[i].Style*64

 5.3.1.4.4 Use ADIdx to look up the step from CubePos to the front/left/bottom cube

touched by the atom, the number of grid cubes along X/Y/Z affected by the atom,

and the atom density data to be added to the ambience grid.

 5.3.1.4.5 Add the atom density data, using SIMD vector instructions for adding

unsigned bytes with saturation (e.g. paddusb).

 5.3.1.5 Allocate a second 3D grid of unsigned bytes with the dimensions of the bounding

box. This grid stores integrated densities.

 5.3.1.6 Loop over the density grid four times: up the Y-axis, down the Y-axis, up the Z-

axis, down the Z-axis

 5.3.1.6.1 Proceed along the current axis direction, adding up the densities in an

accumulation register (again using SIMD vector instructions for adding unsigned

bytes with saturation), and continuously storing the accumulator register in the

second grid, which thus contains integrated densities, i.e. the amount of light

blocked up to this point.

 5.3.1.6.2 Loop over the heavy atoms i in the object:

 5.3.1.6.2.1 Determine again the grid coordinates of the cube that contains the

atom center: CubePos=(Atom[i].LocalPos-BoundingBoxStart)>>18.

 5.3.1.6.2.2 Determine again the relative atom position within the grid cube, this

time without discarding bits: AtomRelPos=(Atom[i].LocalPos-

BoundingBoxStart)&((1<<18)-1).

 5.3.1.6.2.3 Use AtomRelPos as an interpolation factor to interpolate the

integrated density at the position of the atom from the surrounding eight grid

points at CubePos.x/.y/.z, CubePos.x+1/.y/.z, CubePos.x/.y+1/.z etc.

 5.3.1.6.2.4 Store the interpolated integrated density as one of six per-atom

darkness values for later use

 5.3.1.7 At this point, four darkness values (=interpolated integrated densities) per atom

are available, two are still missing: up the X-axis and down the X-axis. These could

not be obtained easily from the density grid, because integration along X would need

to happen 'horizontally' within a SIMD register. Instead, the entire procedure above is

simply repeated with a flipped grid:

 5.3.1.8 Flip the X- and Y-axes of the bounding box

 5.3.1.9 Allocate a 3D grid of unsigned bytes with the dimensions of the flipped bounding

box. This grid stores densities.

 5.3.1.10 Loop over the density grid two times: up the X-axis and down the X-axis

 5.3.1.10.1 Obtain the remaining two interpolated integrated densities (=darkness

values) as described above, flipping atom X- and Y-coordinates to match the

flipped grid axes.

 5.3.2 Now six darkness values 'DirectionDarkness[0..5]' are available for each atom, that

define how much density lies in the path of the light along each of the six main directions.

 5.3.3 Loop over all objects to determine the final ambient darkness value, which depends on

the position of the eye (=camera) with respect to the object's six main direction, and must

thus be recalculated if the object is rotated.

 5.3.3.1 Determine EyeDirection, the direction vector from the object to the eye in the

object's local coordinate system (where the darkness values were determined along the

six main directions MainDirection[0..5], i.e. (1,0,0), (-1,0,0), (0,1,0) etc.

 5.3.3.2 Calculate the scaling factors i for the six darkness values:

Scale[i]=(MainDirection[i]*EyeDirection+1)*0.5

 5.3.3.3 Loop over the atoms i in the object:

 5.3.3.3.1 Calculate the final ambient darkness value: AmbientDarkness[i] =

DirectionDarkness[i][0]*Scale[0]+ DirectionDarkness[i][1]*Scale[1]+.....

+DirectionDarkness[i][5]*Scale[5]

 5.4 Calculate shadows:

 5.4.1 Get a transformation matrix 'LightTransMatrix' that rotates ply_lightdir onto the

negative Z-axis, so that the light shines from behind, this is the coordinate system of the

light-source.

 5.4.2 Loop over the objects i:

 5.4.2.1 Transform the global position of object i, Obj[i].GlobalPos (in [fm]), with

LightTransMatrix, yielding a new position Obj[i].Pos in the coordinate system of the

light-source.

 5.4.2.2 Have atom coordinates in the object changed since last time? If yes, re-determine

Obj[i].Radius (in [fm]), the radius of the sphere that is centered at the position of the

object and encloses all atoms in the object.

 5.4.3 Use the radii of the enclosing spheres to cluster the objects, forming groups of those that

cast shadows onto each other.

 5.4.4 Loop over the groups of objects:

 5.4.4.1 Sort the objects i in the group based on the smallest Z-coordinate covered

(Obj[i].Pos.z-Obj[i].Radius), lowest comes first.

 5.4.4.2 For each object i in the group, create a transformation matrix Obj[i].TransMatrix

from the local (PDB) coordinate system used by the atoms in the object

(Atom[].LocalPos) to the coordinate system of the light-source. This transformation

includes an initial rotation, a translation to Obj[i].GlobalPos and finally

LightTransMatrix.

 5.4.4.3 Shift the objects i in the group along Z (and adjust Obj[i].TransMatrix

accordingly) so that the first object starts at Z=0 (Obj[first].Pos-z-Obj[first].Radius=0)

and that there are no gaps between the enclosing spheres along Z (we soon need to

create a common Z-buffer for all objects in the group, and large gaps between objects

would waste Z-buffer resolution).

 5.4.4.4 Loop over the objects i in the group to determine the Z-range covered:

ZRange=max(ZRange,Obj[i].Pos.z+Obj[i].Radius).

 5.4.4.5 Adapt each Obj[i].TransMatrix to scale the Z-coordinate with -32767/ZRange and

add 32767. If the local atom coordinates Atom[i].LocalPos in an object are multiplied

with this matrix, the resulting Z-coordinates will fall into the range [0..32767] and fit

into a 16 bit signed Z-buffer. Note the inversion, the closest atom gets the highest Z-

coordinate.

 5.4.4.6 Loop over the objects in the group to determine the bounding rectangle along X

and Y in units of [fm], e.g. BoundingRectStart.x =

min(BoundingRectStart.x,Obj[i].Pos.x-Obj[i].Radius) etc.

 5.4.4.7 Convert the size of the bounding rectangle from [fm] to [Z-buffer units], 1 Z-

buffer unit is 1<<14 fm, i.e. ~0.164 Å (see initialization).

 5.4.4.8 Allocate 2D 16bit Z-buffers of signed words with the dimensions of the bounding

rectangle, one for each thread that will work on shadows. Using more than four threads

is not beneficial.

 5.4.4.9 Distribute the atoms in the objects of the current cluster among the threads.

 5.4.4.10 Spawn threads to fill the Z-buffers, and in each thread...

 5.4.4.10.1 Clear the 2D Z-buffer belonging to this thread with zeroes (i.e. the most

distant value after the sign flip above).

 5.4.4.10.2 Loop over the heavy atoms i belonging to this thread:

 5.4.4.10.2.1 Determine which object j the atom i belongs to.

 5.4.4.10.2.2 Transform atom i to the coordinate system of the light:

Atom[i].LightPos = Obj[j].TransMatrix * Atom[i].LocalPos.

 5.4.4.10.2.3 Determine the Z-buffer X/Y coordinates of the atom:

ZBufferPos=(Atom[i].LightPos-BoundingRectStart)>>14.

 5.4.4.10.2.4 Look at the atom style to determine the diameter of the filled circle

that will be drawn into the Z-buffer (the circle mask). We use 15 pixels for

space filling balls, 11 pixels for balls&sticks, and 7 pixels for sticks (see

setup).

 5.4.4.10.2.5 Update the Z-buffer X/Y coordinates by subtracting the radius of the

filled circle.

 5.4.4.10.2.6 Loop over the 7x7, 11x11 or 15x15 square in the Z-buffer that

encloses the current atom using indices k,l:

 5.4.4.10.2.6.1 Update the Z-buffer: ZBuffer[X+k][Y+l]= max(ZBuffer[X+k]

[Y+l], Atom[i].LightPos.z & AtomCircleMask[k][l]). AtomCircleMask

contains the precalculated filled circle (see setup), each pixel is either 0 or

0xffff, and used as an AND-mask, yielding either 0 (for pixels outside the

circle) or Atom[i].LightPos.z (for pixels inside the circle). The

corresponding SIMD vector instructions are pmaxsw and pand.

 5.4.4.11 Combine the Z-buffers of the threads by keeping the maximum values, the result

should look as shown in Figure 1D, with Z-buffer value 0 mapped to white, and 32767

mapped to black.

 5.4.4.12 Spawn threads to determine the amount of light reaching each atom, and in each

thread...

 5.4.4.12.1 Loop over the atoms i belonging to this thread:

 5.4.4.12.1.1 Determine the Z-buffer X/Y coordinates of the atom:

ZbufferPos=(Atom[i].LightPos-BoundingRectStart)>>14.

 5.4.4.12.1.2 Count all Z-buffer pixels within the large atom circle (15 pixels

diameter) that are smaller or equal Atom[i].LightPos.z, then divide by the

number of pixels in the circle to obtain the fraction of the atom that is lighted.

Note that the large circle is also used for smaller atoms (shown as sticks or

balls & sticks), because the larger area reduces flicker.

 5.4.4.12.1.3 Calculate the ShadowDarkness[i] = 1 - lighted fraction.

 5.5 Loop over the atoms i to calculate the final darkness: Atom[i].Darkness=

max(AmbientDarkness[i]* atv_ambience, ShadowDarkness[i]*atv_shadow)

 5.6 Loop over the objects and create new transformation matrices Obj[i].TransMatrix from the

local (PDB) coordinate system used by the atoms in the object (Atom[].LocalPos in [fm]) to

the global coordinate system in [pixels]. This transformation includes an initial rotation, a

translation to Obj[i].GlobalPos, and a conversion from fm to pixels (atv_fmtopix).

 5.7 Loop over the atoms i to transform their coordinates:

 5.7.1 Transform the atom from the local coordinate system within its object j to the common

global coordinate system: Atom[i].GlobalPos [in pixels] = Obj[j].TransMatrix *

Atom[i].LocalPos [in fm]

 5.7.2 Project the global atom coordinates onto the view plane (the 'perspective division'):

Atom[i].ProjectedPos.x=Atom[i].GlobalPos.x*ply_eyedis/

(Atom[i].GlobalPos.z+ply_eyedis), and

Atom[i].ProjectedPos.y=-Atom[i].GlobalPos.y*ply_eyedis/

(Atom[i].GlobalPos.z+ply_eyedis). Note that the Y-coordinate is reversed, because

projected screen coordinates increase from top to bottom.

 5.7.3 Determine the projected atom radius[pixels]: Atom[i].ProjectedRadius=Atom[i].Radius*

ply_eyedis/(Atom[i].GlobalPos.z+ply_eyedis) .

 5.7.4 Loop over the four screen sides (left, right, top, bottom) and check if the atom is entirely

off-screen on this side (considering Atom[i].ProjectedPos and Atom[i].ProjectedRadius). If

yes, set the corresponding Cohen Sutherland clipping bit to 1.

 5.7.5 If abs(Atom[i].GlobalPos.z)<Atom[i].Radius, then add the atom to atv_vpcliptab, the

table of atoms clipped by the view plane.

 5.8 Draw the sticks between atoms shown as sticks or balls&sticks:

 5.8.1 Enable texture mapping

BindTexture(GL_TEXTURE_2D,atv_viewtex);

glTexEnvi(GL_TEXTURE_ENV,GL_TEXTURE_ENV_MODE,GL_REPLACE);

glEnable(GL_TEXTURE_2D);

glEnable(GL_ALPHA_TEST);

 5.8.2 Enable vertex arrays:

glEnableClientState(GL_TEXTURE_COORD_ARRAY);

glEnableClientState(GL_COLOR_ARRAY); (for blending factors)

 5.8.3 Initialize the second texture unit (unit 1). We need multi-texturing to create colors other

than the ATV_COLORS standard colors stored in atv_viewtex. We simply blend two of

the standard colors together, using the color from GL_COLOR_ARRAY as blending

factor.

glActiveTexture(GL_TEXTURE1);

glBindTexture(GL_TEXTURE_2D,atv_viewtex);

 5.8.3.1 In texture unit 1, we GL_COMBINE by GL_INTERPOLATING the previous

RGB/alpha values from texture unit 0...

glTexEnvi(GL_TEXTURE_ENV,GL_TEXTURE_ENV_MODE,GL_COMBINE)

glTexEnvi(GL_TEXTURE_ENV,GL_COMBINE_RGB,GL_INTERPOLATE);

glTexEnvi(GL_TEXTURE_ENV,GL_COMBINE_ALPHA,GL_INTERPOLATE)

glTexEnvi(GL_TEXTURE_ENV,GL_SRC0_RGB,GL_PREVIOUS);

glTexEnvi(GL_TEXTURE_ENV,GL_SRC0_ALPHA,GL_PREVIOUS);

glTexEnvi(GL_TEXTURE_ENV,GL_OPERAND0_RGB,GL_SRC_COLOR);

glTexEnvi(GL_TEXTURE_ENV,GL_OPERAND0_ALPHA,GL_SRC_ALPHA)

 5.8.3.2 ..with those from the current texture unit 1...

glTexEnvi(GL_TEXTURE_ENV,GL_SRC1_RGB,GL_TEXTURE);

glTexEnvi(GL_TEXTURE_ENV,GL_SRC1_ALPHA,GL_TEXTURE);

glTexEnvi(GL_TEXTURE_ENV,GL_OPERAND1_RGB,GL_SRC_COLOR);

glTexEnvi(GL_TEXTURE_ENV,GL_OPERAND1_ALPHA,GL_SRC_ALPHA)

 5.8.3.3 ...using the GL_PRIMARY_COLOR as interpolation factor:

glTexEnvi(GL_TEXTURE_ENV,GL_SRC2_RGB,GL_PRIMARY_COLOR);

glTexEnvi(GL_TEXTURE_ENV,GL_SRC2_ALPHA,GL_PRIMARY_COLOR)

glTexEnvi(GL_TEXTURE_ENV,GL_OPERAND2_RGB,GL_SRC_COLOR);

glTexEnvi(GL_TEXTURE_ENV,GL_OPERAND2_ALPHA,GL_SRC_ALPHA)

glEnableClientState(GL_TEXTURE_COORD_ARRAY);

 5.8.4 Is the extension GL_EXT_fog_coord present? We need it to set the darkness caused by

ambient lighting, shadows and fog. Especially OpenGL/ES is lacking it. So if it is missing,

use texture unit 2 to emulate it using a 1x256 decal texture 'ply_fogtex', which is used to

blend with the fog color:

glActiveTexture(GL_TEXTURE2);

glBindTexture(GL_TEXTURE_2D,ply_fogtex);

glEnable(GL_TEXTURE_2D);

glTexEnvi(GL_TEXTURE_ENV,GL_TEXTURE_ENV_MODE,GL_DECAL);

glClientActiveTexture(GL_TEXTURE2);

glEnableClientState(GL_TEXTURE_COORD_ARRAY);

 5.8.5 Switch back to texture unit 0:

glActiveTexture(GL_TEXTURE0);

glClientActiveTexture(GL_TEXTURE0);

 5.8.6 Is the extension GL_EXT_fog_coord present? Then activate it...

glFogi(GL_FOG_COORDINATE_SOURCE,GL_FOG_COORDINATE);

glEnableClientState(GL_FOG_COORDINATE_ARRAY);

 5.8.7 Draw only pixels with Alpha>0.5:

glAlphaFunc(GL_GREATER,0.5);

 5.8.8 Enable the Z-buffer

glDepthFunc(GL_LEQUAL);

glEnable(GL_DEPTH_TEST);

 5.8.9 Create a queue where multiple threads can add draw buffers with geometry that is ready

to be sent to OpenGL

 5.8.10 Spawn N threads to draw the sticks, and in..

 5.8.10.1 Thread 0, the consumer: Check the queue of draw buffers, and submit any

waiting buffers (consisting of a vertex buffer and an index buffer) to OpenGL using

primitive GL_TRIANGLE_STRIP.

 5.8.10.2 Thread 1..N-1, the workers: Loop over the atoms i assigned to this thread:

 5.8.10.2.1 Is atom i in front of the view plane and not hidden by the user? Then loop

over its covalently bound atoms j:

 5.8.10.2.1.1 Is one of the two binding partners styled as stick or ball&stick? And

is the bound atom not hidden by the user? And has the bound atom j a larger

Z? (Or the same Z and a higher atom number?) And is the bitwise AND of the

two binding partner's Cohen Sutherland clipping bits zero? Then draw the

stick:

 5.8.10.2.1.1.1 Get the normalized direction vector from atom i to atom j:

Vec1 = Normalized(Atom[j].GlobalPos-Atom[i].GlobalPos).

 5.8.10.2.1.1.2 Get the 2D normal vector of the projected direction vector

from atom i to atom j: Vec2 = Normalized(Atom[j].ProjectedPos.y-

Atom[i].ProjectedPos.y, Atom[i].ProjectedPos.x -

Atom[j].ProjectedPos.x)

 5.8.10.2.1.1.3 The cylinder (=stick) vertices lie in planes whose normal

vector is Vec1. Get two vectors spanning this plane: the first is Vec2, and

the second is Vec3 = Normalized(CrossProduct(Vec2,Vec1)).

 5.8.10.2.1.1.4 Determine the level of detail (LOD), i.e. how many quads

(=rectangles consisting of 2 triangles) will be used to approximate the

bond cylinder. If Atom[i].ProjectedRadius>9, we draw 5 quads with 12

vertices (i.e. 6 steps*2 sides=12 vertices, 36 degrees apart, since only the

front side of each cylinder is drawn). If Atom[i].ProjectedRadius>3, we

use 3 quads (4 steps*2=8 vertices, 60 degree apart), and one single quad

otherwise.

 5.8.10.2.1.1.5 Determine the distance between the start of a stick cylinder

attached to atom i and atom i (1 is subtracted to move a bit closer):

StickDistance_i = max(0,sqrt(sqr(Atom[i].Radius)-sqr(StickRadius))-1).

 5.8.10.2.1.1.6 Determine the distance between the start of a stick cylinder

attached to atom j and atom j:

StickDistance_j = max(0,sqrt(sqr(Atom[j].Radius)-sqr(StickRadius))-1).

 5.8.10.2.1.1.7 Loop over the steps, k=0..steps-1, calculate the vertex

positions:

 5.8.10.2.1.1.7.1 First the angle along the cylinder side surface:

Alpha = k*(Pi/(steps-1))

 5.8.10.2.1.1.7.2 Then the position on the cylinder side surface:

Pos=Vec2*cos(Alpha)*StickRadius+Vec3*sin(Alpha)*StickRadius,

use a lookup table to speed this up.

 5.8.10.2.1.1.7.3 Calculate the corresponding texture coordinate:

TexPos.x(.y)= Pos.x(.y) * 0.97 * SphereImageRadius / StickRadius +

SphereImageRadius, where SphereImageRadius is the radius of the

ATV_COLORS largest sphere images in atv_viewtex. The empirical

factor 0.97 makes sure that the texture position is not too close to the

border of the sphere image.

 5.8.10.2.1.1.7.4 Calculate the corresponding vertex positions at atoms i

and j: Pos_i=Pos+Atom[i].GlobalPos+StickDistance_i*Vec1,

Pos_j=Pos+Atom[j].GlobalPos-StickDistance_j*Vec1.

 5.8.10.2.1.1.7.5 Store the vertex at atom i in the vertex buffer: Vertex.Pos

= Pos_i, Vertex.TexPos1 = TexPos+ColorOffset1i, Vertex.TexPos2 =

TexPos+ColorOffset2i, Vertex.Color=BlendingFactor_i (the color of

atom i is created using multi-texturing, by blending two sphere images

in texture atv_viewtex starting at ColorOffset1i and ColorOffset2i

with BlendingFactor_i. The last three values are read from a look up

table, using Atom[i].Color as index). Vertex.FogPos =

atv_darknessfogpos[Atom[i].Darkness].

 5.8.10.2.1.1.7.6 If atoms i and j have different colors, store two vertices

halfway between, with position (Pos_i+Pos_j)*0.5. Except for the

position, the first vertex is the same as the one above, and the second

vertex is the same as the one below.

 5.8.10.2.1.1.7.7 Store the vertex at atom j in the vertex buffer: Vertex.Pos

= Pos_j, Vertex.TexPos1 = TexPos+ColorOffset1j, Vertex.TexPos2 =

TexPos+ColorOffset2j, Vertex.Color=BlendingFactor_j (as above).

Vertex.FogPos = atv_darknessfogpos[Atom[j].Darkness]

 5.8.10.2.1.1.8 Finish the stick by adding indices to the index buffer. If the

index buffer is not empty, first add degenerate triangle indices to jump

from the previous stick to the current one.

 5.8.10.2.2 If the vertex buffer is full or the last atom has been reached, add it to the

queue (to be drawn by thread 0) and fill the next buffer or stop.

 5.8.11 Disable texture mapping, vertex arrays, alpha blending, depth test, restore depth func.

 5.9 If antialiasing is enabled (and atoms will be drawn with alpha-blending enabled to get

perfectly smooth spheres, independent of any full-scene antialiasing provided by the GPU):

spawn multiple threads to sort the atoms by their Atom[i].GlobalPos.z, e.g. by dividing the Z-

range into multiple small intervals, and using a simple insertion sort within each interval.

 5.10 Draw the atom spheres:

 5.10.1 Repeat the steps done for drawing sticks above: Enable texture mapping and vertex

arrays, initialize the second texture unit, deal with GL_EXT_fog_coord. There is mainly

one difference: If antialiasing is enabled, and atoms have been depth-sorted, don't draw

only pixels with Alpha>0.5 (see above), but do real alpha blending instead:

glEnable(GL_BLEND);

glBlendFunc(GL_SRC_ALPHA,GL_ONE_MINUS_SRC_ALPHA);

glAlphaFunc(GL_GREATER,0.0);

 5.10.2 Create a queue where multiple threads can add draw buffers.

 5.10.3 Spawn N threads to draw the spheres. If antialiasing is enabled, we need to draw the

depth-sorted spheres in order, so N is at most 2, more threads would not help. And in..

 5.10.3.1 Thread 0, the consumer: Check the queue of draw buffers, and submit any

waiting buffers (consisting of a vertex buffer and an index buffer) to OpenGL using

primitive GL_TRIANGLE_STRIP.

 5.10.3.2 Thread 1..N-1, the workers: If antialiasing is enabled and atoms have been depth-

sorted before, loop over the atoms i in the sort table, otherwise loop over the atoms i

assigned to this thread:

 5.10.3.2.1 Is atom i in front of the view plane and not hidden by the user and not off

screen (Cohen Sutherland clipping bits are zero)? Then draw it:

 5.10.3.2.1.1 Look up the texture coordinates of the smallest two sphere images in

atv_viewtex that are larger than Atom[i].ProjectedRadius (mip-mapping) and

need to be blended to produce the color of the current atom. Each of the two

sphere images has actually two texture coordinates: the top left corner 'tl' and

the bottom right corner 'br', so we have four texture coordinates in total:

ColorOffset1tl, ColorOffset1br, ColorOffset2tl and ColorOffset2br.

 5.10.3.2.1.2 Is the atom styled as stick or ball&stick? Or does the atom have no

covalent bonds? Then we do not consider intersections with other atoms and

can...

 5.10.3.2.1.2.1 Draw a non-intersecting atom, i.e. a single quad (two triangles)

by storing the four corner vertices in the vertex buffer (Figure 1C, oxygen

and hydrogen 1):

 5.10.3.2.1.2.1.1 Store top left corner: Vertex.Pos = (Atom[i].GlobalPos.x-

Atom[i].Radius, Atom[i].GlobalPos.y+Atom[i].Radius,

Atom[i].GlobalPos.z),Vertex.TexPos1=ColorOffset1tl,

Vertex.TexPos2=ColorOffset2tl,Vertex.Color=BlendingFactor_i,

Vertex.FogPos=atv_darknessfogpos[Atom[i].Darkness] (these vertex

components are described in detail in the section about stick drawing).

 5.10.3.2.1.2.1.2 Top right corner: Vertex.Pos = (Atom[i].GlobalPos.x+

Atom[i].Radius, Atom[i].GlobalPos.y+Atom[i].Radius,

Atom[i].GlobalPos.z),

Vertex.TexPos1=(ColorOffset1br.x,ColorOffset1tl.y),

Vertex.TexPos2=(ColorOffset2br.x,ColorOffset2tl.y), rest is the same.

 5.10.3.2.1.2.1.3 Bottom left corner: Vertex.Pos=(Atom[i].GlobalPos.x-

Atom[i].Radius,Atom[i].GlobalPos.y-Atom[i].Radius,

Atom[i].GlobalPos.z),

Vertex.TexPos1=(ColorOffset1tl.x,ColorOffset1br.y),

Vertex.TexPos2=(ColorOffset2tl.x,ColorOffset2br.y).

 5.10.3.2.1.2.1.4 Bottom right corner: Vertex.Pos=(Atom[i].GlobalPos.x+

Atom[i].Radius,Atom[i].GlobalPos.y-Atom[i].Radius,

Atom[i].GlobalPos.z),Vertex.TexPos1=ColorOffset1br,

Vertex.TexPos2=ColorOffset2br, rest is again the same.

 5.10.3.2.1.3 Otherwise (if the atom is shown in space filling style), it can

potentially intersect with other atoms and we need to...

 5.10.3.2.1.3.1 Draw a potentially intersecting atom (Figure 1C, hydrogen 2):

 5.10.3.2.1.3.1.1 Calculate the screen coordinates of the top left corner

and store it in 2D vectors StartLeftEdge=LastLeftEdge=

Atom[i].ProjectedPos-Atom[i].ProjectedRadius.

 5.10.3.2.1.3.1.2 Calculate the screen coordinates of the top right corner,

and store it in 2D vectors StartRightEdge=LastRightEdge=

(LeftEdge.x+Atom[i].ProjectedRadius*2,LeftEdge.y)

 5.10.3.2.1.3.1.3 Collect all the more distant atoms j

(Atom[j].GlobalPos.z>Atom[i].GlobalPos.z or (Atom[j].GlobalPos.z

==Atom[i].GlobalPos.z and j>i)) that can influence the shape of atom

i by intersection, i.e. those atoms that are closer along Z than their

own radius (Atom[j].GlobalPos.z-Atom[i].GlobalPos.z<

Atom[j].Radius) and whose sphere image touches atom i:

Length(Atom[j].ProjectedPos-Atom[i].ProjectedPos)<

Atom[i].ProjectedRadius+Atom[j].ProjectedRadius. The atoms j could

be found quickly with a neighbor search grid, but it turns out that the

trivial approach to just look at covalently bound atoms is good

enough. If no atom j is found, draw a non-intersecting atom instead.

 5.10.3.2.1.3.1.4 Get pointers to the pre-calculated Z-buffers of atom i and

the atoms j (there is one Z-buffer with 8-bit depth values for every

Atom.ProjectedRadius, see initialization).

 5.10.3.2.1.3.1.5 Loop over the Atom[i].ProjectedRadius*2 pixel lines of

atom i:

 5.10.3.2.1.3.1.5.1 Calculate the screen coordinates of the current left

polygon edge, assuming no intersections: LeftEdge=

(Atom[i].ProjectedPos.x-Atom[i].ProjectedRadius,

LastLeftEdge.y+1)

 5.10.3.2.1.3.1.5.2 Calculate the screen coordinates of the current

right polygon edge, assuming no intersections: RightEdge=

(Atom[i].ProjectedPos.x+Atom[i].ProjectedRadius,

LastRightEdge.y+1)

 5.10.3.2.1.3.1.5.3 Look up the positions of the left-most and right-

most pixels of the current pixel line of atom i (tracing the sphere

outline).

 5.10.3.2.1.3.1.5.4 Loop over the probably intersecting atoms j:

 5.10.3.2.1.3.1.5.4.1 Look up the positions of the left-most and

right-most pixels of the corresponding pixel line of atom j. If

they overlap with those of atom i, determine the corresponding

pixel line in the Z-buffer of atom j, and compare the Z-buffer

values (considering the Z-difference Atom[j].GlobalPos.z-

Atom[i].GlobalPos.z) until the intersection is found. Update

LeftEdge.x and RightEdge.x accordingly.

 5.10.3.2.1.3.1.5.5 Check if LeftEdge lies roughly (+-1 pixel) on a

line through StartLeftEdge and LastLeftEdge, and if RightEdge lies

roughly on a line trough StartRightEdge and LastRightEdge. If this

is not true, then the intersection curve has changed direction so

much, that it can no longer be approximated by a straight line. We

therefore need to emit four vertices to draw a part of the sphere

(Figure 1C, hydrogen 2), as described above for drawing a non-

intersecting atom. The only difference are Vertex.Pos,

Vertex.TexPos1 and Vertex.TexPos2, which are no longer at the

four corners of the atom, but at StartLeftEdge, StartRightEdge,

LastLeftEdge, and LastRightEdge (these screen coordinates need to

be transformed back to global coordinates and to texture

coordinates). Finally set StartLeftEdge=LastLeftEdge and

StartRightEdge=LastRightEdge.

 5.10.3.2.1.3.1.5.6 Set LastLeftEdge=LeftEdge, and LastRightEdge=

RightEdge.

 5.10.3.2.2 If the vertex buffer is full or the last atom has been drawn, add it to the

queue (to be drawn by thread 0) and fill the next buffer or stop.

 5.10.4 Disable texture mapping, vertex arrays, alpha blending, depth test, restore depth func.

 5.11 Handle clipped atoms: Loop over the atoms i that are cut by the view plane (stored in

atv_vpcliptab), determine the radius of the clipping circle (CircleRadius = sqrt

(sqr(Atom[i].Radius)-sqr(Atom[i].GlobalPos.z))) and draw it, potentially with a text indicating

the chemical element, which thus becomes visible when the atom is cut open.

 5.12 If stereoscopic 3D is active, repeat the drawing procedure using the second texture

atv_viewtex2 and horizonally shifted atom coordinates.

